Fit and predict in a single function.
fit_model( df = NULL, yname = NULL, xname = NULL, modeltype = NULL, drop_non_numeric = FALSE, ... )
df | A data.frame object |
---|---|
yname | The outcome variable |
xname | The predictor variable(s) |
modeltype | A character specifying the model type e.g lm for linear model |
drop_non_numeric | Should non numeric columns be dropped? Defaults to FALSE |
... | Other arguments to specific model types. |
data("yields", package="manymodelr") fit_model(yields,"height","weight","lm") #> #> Call: #> lm(formula = height ~ weight, data = use_df) #> #> Coefficients: #> (Intercept) weight #> 0.5661 -0.2174 #> fit_model(yields, "weight","height + I(yield)**2","lm") #> #> Call: #> lm(formula = weight ~ height + I(yield)^2, data = use_df) #> #> Coefficients: #> (Intercept) height I(yield) #> 0.0112753 -0.1463926 0.0006827 #>