This function returns the correlations between different variables.
get_var_corr( df, comparison_var = NULL, other_vars = NULL, method = "pearson", drop_columns = c("factor", "character"), ... )
df | The data set for which correlations are required |
---|---|
comparison_var | The variable to compare to |
other_vars | variables for which correlation with comparison_var is required. If not supplied, all variables will be used. |
method | The method used to perform the correlation test as defined in 'cor.test'. Defaults to pearson. |
drop_columns | A character vector specifying column classes to drop. Defaults to c("factor","character") |
... | Other arguments to 'cor.test' see ?cor.test for details |
A data.frame object containing correlations between comparison_var and each of other_vars
# Get correlations between all variables get_var_corr(mtcars,"mpg") #> comparison_var other_var p.value correlation lower_ci upper_ci #> 1 mpg cyl 6.112687e-10 -0.8521620 -0.92576936 -0.7163171 #> 2 mpg disp 9.380327e-10 -0.8475514 -0.92335937 -0.7081376 #> 3 mpg hp 1.787835e-07 -0.7761684 -0.88526861 -0.5860994 #> 4 mpg drat 1.776240e-05 0.6811719 0.43604838 0.8322010 #> 5 mpg wt 1.293959e-10 -0.8676594 -0.93382641 -0.7440872 #> 6 mpg qsec 1.708199e-02 0.4186840 0.08195487 0.6696186 #> 7 mpg vs 3.415937e-05 0.6640389 0.41036301 0.8223262 #> 8 mpg am 2.850207e-04 0.5998324 0.31755830 0.7844520 #> 9 mpg gear 5.400948e-03 0.4802848 0.15806177 0.7100628 #> 10 mpg carb 1.084446e-03 -0.5509251 -0.75464796 -0.2503183 # Use only a few variables get_var_corr(mtcars,"mpg", other_vars = c("disp","drat"), method = "kendall",exact=FALSE) #> comparison_var other_var p.value correlation #> 1 mpg disp 1.006950e-09 -0.7681311 #> 2 mpg drat 2.381533e-04 0.4645488