Provides a convenient way to extract any kind of model information from common model objects
extract_model_info(model_object = NULL, what = NULL, ...)
model_object | A model object for example a linear model object, generalized linear model object, analysis of variance object. |
---|---|
what | character. The attribute you would like to obtain for instance p_value |
... | Arguments to other functions e.g. AIC, BIC, deviance etc |
This provides a convenient way to extract model information for any kind of model. For linear models, one can extract such attributes as coefficients, p value("p_value"), standard error("std_err"), estimate, t value("t_value"), residuals, aic and other known attributes. For analysis of variance (aov), other attributes like sum squared(ssq), mean squared error(msq), degrees of freedom(df),p_value.
# perform analysis of variance data("yields", package="manymodelr") aov_mod <- fit_model(yields, "weight","height + normal","aov") extract_model_info(aov_mod, "ssq") #> Sum Sq #> height 0.9721 #> normal 0.0528 #> Residuals 29.6789 extract_model_info(aov_mod, c("ssq","predictors")) #> $ssq #> Sum Sq #> height 0.9721 #> normal 0.0528 #> Residuals 29.6789 #> #> $predictors #> [1] "height + normal" #> # linear regression lm_model <-fit_model(yields, "weight","height","lm") extract_model_info(lm_model,c("aic","bic")) #> $aic #> [1] -671.6655 #> #> $bic #> [1] -656.9423 #> ## glm glm_model <- fit_model(yields, "weight","height","glm") extract_model_info(glm_model,"aic") #> [1] -671.6655